In vivo Imaging of Mitochondrial Transport in Single-Axon Regeneration of Zebrafish Mauthner Cells
نویسندگان
چکیده
Mitochondrial transport is essential for neuronal function, but the evidence of connections between mitochondrial transport and axon regeneration in the central nervous system (CNS) of living vertebrates remains limited. Here, we developed a novel model to explore mitochondrial transport in a single Mauthner axon (M axon) of zebrafish with non-invasive in vivo imaging. To confirm the feasibility of using this model, we treated labeled zebrafish with nocodazole and demonstrated that it could disrupt mitochondrial transport. We also used two-photon laser axotomy to precisely axotomize M axons and simultaneously recorded their regeneration and the process of mitochondrial transport in living zebrafish larvae. The findings showed that the injured axons with stronger regenerative capability maintain greater mitochondrial motility. Furthermore, to stimulate axon regeneration, treatment with dibutyryl cyclic adenosine monophosphate (db-cAMP) could also augment mitochondrial motility. Taken together, our results provide new evidence that mitochondrial motility is positively correlated with axon regeneration in the living vertebrate CNS. This promising model will be useful for further studies on the interaction between axon regeneration and mitochondrial dynamics, using various genetic and pharmacological techniques.
منابع مشابه
MicroRNA-133b Negatively Regulates Zebrafish Single Mauthner-Cell Axon Regeneration through Targeting tppp3 in Vivo
Axon regeneration, fundamental to nerve repair, and functional recovery, relies on rapid changes in gene expression attributable to microRNA (miRNA) regulation. MiR-133b has been proved to play an important role in different organ regeneration in zebrafish, but its role in regulating axon regeneration in vivo is still controversial. Here, combining single-cell electroporation with a vector-base...
متن کاملOverexpression of Wld(S) or Nmnat2 in mauthner cells by single-cell electroporation delays axon degeneration in live zebrafish.
Axon degeneration is supposed to be a therapeutic target for treating neurodegenerative diseases. Mauthner cells (M-cells) are ideal for studying axons in vivo because of their limited numbers, large size, and long axons. In this study, we labeled M-cells by single-cell electroporation with plasmids expressing DsRed2 or EGFP. Injury-induced axon degeneration in labeled M-cell was imaged under a...
متن کاملIndividual axons regulate the myelinating potential of single oligodendrocytes in vivo.
The majority of axons in the central nervous system (CNS) are eventually myelinated by oligodendrocytes, but whether the timing and extent of myelination in vivo reflect intrinsic properties of oligodendrocytes, or are regulated by axons, remains undetermined. Here, we use zebrafish to study CNS myelination at single-cell resolution in vivo. We show that the large caliber Mauthner axon is the f...
متن کاملMutations in deadly seven/notch1a reveal developmental plasticity in the escape response circuit.
The relatively simple neural circuit driving the escape response in zebrafish offers an excellent opportunity to study properties of neural circuit formation. The hindbrain Mauthner cell is an essential component of this circuit. Mutations in the zebrafish deadly seven/notch1a (des) gene result in supernumerary Mauthner cells. We addressed whether and how these extra cells are incorporated into...
متن کاملAxon degeneration and PGC - 1 α - mediated protection in a zebrafish model of α - synuclein toxicity
571 ABSTRACT α-synuclein (aSyn) expression is implicated in neurodegenerative processes, including Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). In animal models of these diseases, axon pathology often precedes cell death, raising the question of whether aSyn has compartment-specific toxic effects that could require early and/or independent therapeutic intervention. The relevanc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2017